
1 of 16Journal of Biogeography, 2025; 52:e15104
https://doi.org/10.1111/jbi.15104

Journal of Biogeography

RESEARCH ARTICLE OPEN ACCESS

Recent Long- Distance- Dispersal Explains the Range 
Disjunction of the Old- Word Cockleburs (Xanthium 
strumarium)
Eleonora Manzo  |  Salvatore Tomasello

Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), University of Göttingen, Göttingen, Germany

Correspondence: Eleonora Manzo (eleonora.manzo@uni-goettingen.de)

Received: 22 October 2024 | Revised: 24 January 2025 | Accepted: 28 January 2025

Funding: This work was supported by Deutsche Forschungsgemeinschaft.

Keywords: ancestral range reconstruction | archival DNA | Asteraceae | biogeography | Heliantheae | museomics | phylogenomics

ABSTRACT
Aim: In the present study, we focused in addressing questions concerning the biogeographic history of Xanthium strumarium, 
an Old World native species whose close relatives are generally all native to the American continent.
Location: The species distribution covers the Eurasian continent and some African regions and close islands.
Methods: We employed herbarium material and target enrichment (herbariomics) sequence data of over 700 single copy loci to 
estimate the divergence times of the species. Ancestral range reconstruction was employed to test different hypotheses on the 
events that determined the arrival, differentiation and dispersal of the ancestor of X. strumarium in the Old World.
Results: The crown age of X. strumarium was estimated to be ~156.58 ka. In the phylogenomic analysis, the individuals from 
the different geographic areas grouped mostly congruently based on their collection origin, the earliest diverging clade compris-
ing samples from India, and then progressively clades including samples from Asia, Europe and Africa. The same pattern was 
observed in the biogeographic analysis, with a movement of the ancestral ranges going from east to west. The ancestral range of 
the species was inferred to be the Indian subcontinent.
Main Conclusions: Both the use of herbarium specimens as old as 240 years and the use of modern sequencing techniques 
clarified the phylogenetic relationships, divergence time and biogeography of Xanthium strumarium. Most probably, the ancestor 
of the species reached the Old World by way of a trans- Pacific long- distance dispersal from the Americas to Southeastern Asia, 
followed by westward colonisation of the Old World.

1   |   Introduction

The existence of morphologically similar plants in different 
continents has fascinated botanists and biogeographers since 
the early 18th century. Probably, this phenomenon was first 
noticed by the French Jesuit Joseph- François Lafitau, who 
found American ginseng near Montreal in 1716, a genus oth-
erwise known from eastern Asia (Wen 1999). Since then, in-
tercontinental disjunctions in the natural geographic ranges 

of many plant groups have fascinated scientists like Linnaeus 
(see Graham  1972), Darwin (see Wen et  al.  2010), and 
Wallace (1880). Most intriguing to them were the possible ex-
planations for such distributional gaps (Thorne 1972). The first 
who systematically analysed such disjunctions was Asa Gray, 
who made floristic comparisons among eastern North America, 
western North America, Japan, and Europe (Gray 1840, 1846, 
1856, 1857), finding that the eastern rather than western 
North America showed higher floristic affinity with eastern 
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Asia (the eastern Asian- eastern North American disjunction, 
also known as the ASA GRAY disjunction; Krutzsch  1989). 
Thorne (1972) provided a systematic classification of the major 
intercontinental disjunction patterns, recognising 16 main cat-
egories. In the last decades, many attempts have been made 
to understand if vicariance or long- distance dispersal (LDD) 
events could explain these main intercontinental disjunctions 
(e.g., Xiang and Soltis 2001; Milne 2006; Villaverde et al. 2017; 
Harris et al. 2018 for reviews).

Intercontinental disjunctions between eastern Asia and North 
America have been studied extensively in the last two decades 
(see reviews by Wen  1999, 2001; Donoghue and Smith  2004; 
Wen et  al.  2010). Most studies to date have focused on tem-
perate plant groups and have highlighted the importance of 
the Bering land bridge for floristic exchanges between the two 
continents (Li and Wen 2013). Less effort has been devoted to 
tropical or subtropical regions (but see, e.g., Wang et al. 2004; 
Wen et al. 2008; Li and Wen 2013). The amphi- Pacific Tropical 
disjunction was one of the major intercontinental disjunction 
classes recognised by Thorne (1972). Plant taxa exhibiting such 
distribution occur in both the Neotropics and the subtropical 
and tropical regions on the western borders of the Pacific Ocean. 
Eighty- nine genera of flowering plants that exhibit the amphi- 
Pacific tropical distribution were enumerated by Thorne (1972), 
and van Steenis (1962) presented a list of “amphi- transpacific” 
genera organised in latitudinal groups. How these taxa achieved 
their present amphi- Pacific disjunct ranges has long been spec-
ulated (van Steenis 1962; Raven and Axelrod 1974).

The cocklebur, Xanthium L. (Asteraceae), is a genus of annual 
herbaceous plants of the Heliantheae tribe. It is a peculiar genus 
among the Asteraceae, known for being wind- pollinated and 
for having burs, peculiar inflorescences enclosing two female 
flowers and completely covered with spines and two beaks 
(Figure 1). These burs have been shown to have a clear dispersal 
function, being able to adhere to animal fur and/or float in water 
for several days and so being spread for hundreds of kilometres 
(Liddle and Elgar 1984). Xanthium is a cosmopolitan genus with 
various taxa dispersed outside their original distribution range 
by human activity, becoming in some cases widespread crop 

competitors (Bloomberg et al. 1982; Byrd and Coble 1991; Yuan 
et al. 2018; Jehlík et al. 2019).

Historically, there has been some confusion among the taxa de-
scribed in the genus, which has resulted in frequent misidentifica-
tion to the present day, particularly in the case of X. sect. Xanthium 
(Tomasello 2018; Müller- Kiefer and Tomasello 2022). In their re-
spective works, Widder (1923) and Millspaugh and Sherff (1919) 
recognised over 20 species each, while Löve and Dansereau (1959) 
divided the genus into only three species, grouping the whole X. 
sect. Xanthium into a single species, Xanthium strumarium L. A 
recent study (Tomasello 2018) demonstrated that there is a clear 
genetic distinction between X. strumarium, and the other spe-
cies complexes of the section (i.e., X. orientale L. and X. chinense 
Mill.). The focus of the present study is X. strumarium as defined 
in Tomasello (2018), which differs from the often- misidentified X. 
orientale (native to America and invasive in the Old World).

1.1   |   Xanthium strumarium

It is a thermophilic complex that is commonly found in sandy 
habitats, such as ditches and riverbanks (Arcangeli  1882; 
Widder 1923). It is mainly distributed throughout Eurasia and 
Africa, and known to be native to these regions, with records 
in the literature dating back to the Dioscorides' De Materia 
Medica (First century BC) and fossil records from the last in-
terglacial period (Löve 1975; Chauhan 1991). However, the spe-
cies has suffered a progressive decline in the last two centuries 
(parallel to the spreading of the non- native X. orientale) and is 
nowadays difficult to find in nature in a great part of its native 
range (Müller- Kiefer and Tomasello 2022). Differently from its 
congenerics, the species did not manage to spread outside its 
native distribution range. The only putative stable populations 
found outside the Old World were in southern Brazil, initially 
described by Vellozo (1881) as a different species (X. brasilicum 
Vell.) and presumably originated from burs arrived from the 
Mediterranean basin (Widder 1923).

Xanthium strumarium distribution range is unique when com-
pared to the other species of the genus, which are all native to 

FIGURE 1    |    (A) Flowering branch of a Xanthium strumarium individual cultivated at the Old Botanical Garden of the University of Göttingen and 
showing male and female inflorescences. (B) Close up of a bur (female capitulum).
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America (Tomasello  2018). Even subtribe Ambrosiinae Less. 
and tribe Heliantheae Cass. to which Xanthium belongs are 
well- known to have an American origin and distribution centre 
(Baldwin 2009). The subtribe, for example, is composed by about 
thirteen genera and over 150 species (Tomasello et al. 2019), and 
the only other taxon non- native to America apart from X. stru-
marium is Ambrosia maritima L. (Martin et al. 2018). Ambrosia 
maritima is supposed to be native to the Mediterranean basin and 
the coast of central- western Africa, although its distinctiveness 
from other taxa of the genus with an American origin is question-
able based on phylogenetic data (Martin et al. 2018). At the tribal 
level, only a few examples are known of genera including species 
with native ranges found outside America (Baldwin 2009), all of 
them from subtribe Ecliptinae Less. (Blainvillea Cass., Eclipta 
L., Indocypraea Orchard, Exomiocarpon Lawalrée, Fenixia 
Merr., Hoffmanniella Schltr. ex Lawalrée, Pentalepis F.Muell.).

The very distinctive distribution of X. strumarium in the Old 
World may be the results of a relatively recent long- distance dis-
persal event, as hypothesized also for Ambrosia maritima (Martin 
et  al.  2018). This could be explained by means of the dispersal 
strategy of Xanthium burs, that include zoochory (as above men-
tioned), but also hydrochory and thalassochory. Takakura and 
Fujii (2010) demonstrated that burs of Xanthium can be soaked in 
salty water for weeks and still be viable, a feature that could have 
favoured the arrival of Xanthium to the Old World via sea. Also, 
mammal and bird migration routes from America to Eurasia 
(Backensto et al. 2016; Yong et al. 2021) might have facilitated the 
spread of Xanthium diaspores in Eurasia.

On the other hand, it is widely acknowledged that from the 
Miocene to the present, numerous alternations of cold and 
warm periods have impacted the palaeogeography of conti-
nents, leading to the cyclical connections and separations of 
landmasses through ice sheet formation and sea- level changes 
(Brikiatis  2014; Hosner et  al.  2015). These shifts resulted in 
the formation of different land bridges that facilitated animal 
and plant dispersal (Hosner et  al.  2015; Maguilla et  al.  2018). 
When concerning connections between America and the Old 
World, a few important events need to be mentioned. The De 
Geer Land Bridge appeared during the Late Cretaceous and 
Early Palaeocene in two time windows around 69 million 
years ago (Ma) and 65.5 Ma, connecting North America with 
Eurasia through Greenland and Fennoscandia (Brikiatis 2014). 
The Thulean Route, present from the Early Palaeocene until 
the Early Eocene, also connected North America with Eurasia 
via the British Isles and Greenland (Brikiatis 2014). The Japan 
Land Bridges appeared multiple times due to sea level changes, 
connecting the Japanese archipelago to modern Russia during 
the Pleistocene (Millien- Parra and Jaeger  1999). Finally, The 
Beringia Land Bridge, perhaps the most well- known, connected 
North America to Eurasia through Russia, Alaska, and Canada 
and appeared multiple times during the Palaeocene and most 
recently during the Last Glacial Maximum circa 30–20 thou-
sand years ago (Brikiatis 2014; Hoffecker et al. 2016).

With the present study, we want to test if the arrival of the di-
aspores of the ancestor of X. strumarium in the new continent 
was caused by a long- distance dispersal event or if alternatively, 
it was the result of a progressive dispersal through a land bridge 
(e.g., the Beringian Bridge). Additionally, we aim at addressing 

a few main questions concerning the biogeographic history of 
Xanthium strumarium. (a) What is the temporal framework in 
which the ancestor of the species arrived in the Old World? (b) 
What have been the possible pathways followed by the species 
to spread all- over the Old World? To answer these questions, we 
used herbarium specimens and applied target enrichment of nu-
clear genes to infer the phylogeography of the species. We used 
Bayesian methods to estimate its divergence time and ancestral 
range reconstruction to test different possible scenarios of the 
pathways followed by the genus Xanthium to reach and colonise 
the Old World.

2   |   Materials and Methods

2.1   |   Plant Material

To ascertain the biogeographic history of X. strumarium, 
we have sampled as much as possible trying to cover the 
whole distribution range of the species for a total of 53 sam-
ples (Table 1). In order to estimate the divergence time of the 
complex, we included 15 additional samples from other taxa 
of the genus Xanthium. A total of 68 samples were analysed, 
two of which collected, and silica- gel dried from plants culti-
vated at the Botanical Garden of the University of Göttingen 
(Germany; Figure 1), all the others retrieved from herbarium 
collections. The sampled herbarium specimens were collected 
between 1782 and 2018 and acquired from various herbaria: 
B, BA, BOLO, CAT, FI, G, GH, GOET, M, P, PR, TEX, and WU 
(acronyms following Thiers 2024).

2.2   |   DNA Extraction

Genomic DNA was extracted from 5 to 10 mg of dried leaf ma-
terial. The fragments were inserted into a 2 mL Eppendorf tube 
with a sterilised steel ball and pulverised with a TissueLyser II 
(Qiagen, Hilden, Germany). Two distinct extraction methodolo-
gies were employed to maximise the quantity and quality of ex-
tracted DNA. For samples exceeding 100 years of age, an ancient 
DNA (aDNA) extraction method was utilised (PTB- DTT, Dabney 
et al. 2013; Gutaker et al. 2017). For the more recent samples, the 
Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) was 
employed, in accordance with the manufacturer's instructions 
and the modifications detailed in Marinček et al. (2022).

The extractions were conducted under a laminar flow bench, 
and the equipment sterilised with DNA Away (Thermo Fisher 
Scientific, Waltham, USA) and UVaClean UV Pipette Carousel 
(MTC Bio, Sayreville, USA). All precautions to prevent contam-
ination were employed. The extracts were then run in a 2% aga-
rose gel to roughly estimate fragment lengths. Concentrations 
were measured using a Qubit 3 Fluorometer (Thermo Fisher 
Scientific) and the Qubit dsDNA HS Assay Kit (Thermo Fisher 
Scientific).

2.3   |   Library Preparation

Two distinct kits were employed for library preparation in ac-
cordance with the manufacturer's instructions. The first was 
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the NEBNext Ultra II DNA Library Prep Kit for Illumina (New 
England BioLabs, Ipswich, USA), which was utilised for her-
barium samples that did not require enzymatic fragmentation. 
The second was the NEBNext Ultra II FS DNA Library Prep 
Kit for Illumina (New England BioLabs), which was employed 
for more recent specimens. For old herbarium samples, 1.5 vol-
umes of HighPrep beads (MagBio Genomics, Gaithersburg, 
USA) was utilised instead of the default 0.8 volumes during 
the purification step of adapter- ligation products (see also 
Marinček et al. 2022).

Following adapter- ligation, a PCR amplification was conducted 
for 14 cycles and samples were barcoded using sample- specific 
dual indices (NEBNext Multiplex Oligos for Illumina (Index 
Primers Set 1), NEBNext Multiplex Oligos for Illumina (Index 
Primers Set 2), NEBNext Multiplex Oligos for Illumina (96 
Unique Dual Index Primer Pairs); New England BioLabs), and 
subsequently purified with the HighPrep magnetic beads.

Target enrichment was performed using the myBaits COS 
Compositae 1Kv1 kit (Mandel et  al.  2014; Daicel Arbor 
Biosciences, Ann Arbor, USA). Samples were pooled in equal 
concentrations in a group of six, dried in a Concentrator Plus 
(Eppendorf, Hamburg, Germany) and rehydrated in 7 μL of dis-
tilled water. This solution was subjected to the hybridisation 
incubation, which was performed at 65°C for 20 h. Finally, the 
hybridization products were PCR amplified using P7 and P5 
Illumina library primers and the 2X KAPA HiFi HotStart Ready 
Mix (Roche, Basel, Switzerland) and purified with the HighPrep 
magnetic beads.

Concentrations were measured using the Qubit 3, and quality 
control was performed on a QIAxcel (Qiagen) using the DNA 
High Resolution Kit 1200, the QX Size Marker 50 bp- 800 bp v2.0 
and the QX DNA Alignment Marker 15 bp- 5 kb. When present, 
adapter dimer peaks (approximately 125 bp) were removed using 
the BluePippin (Sage Science, Beverly, USA) and 2% cassettes 
with the 2% DF Marker V2.

Samples were then pooled equimolarly and sequenced on an 
Illumina NovaSeq 6000 system (Illumina, San Diego, California, 
USA) using an SP P300 Xp (2 × 150bp kit). Some samples were 
sequenced on different runs of an Illumina MiSeq system using 
either a 2 × 250bp (500 circles) or 2 × 150 bp (300 circles) v2 kit. 
Sequencing was performed at the NGS Integrative Genomics 
(NIG) Core Unit at the University of Göttingen.

2.4   |   Raw Reads Processing

Raw reads were initially processed in HybPhyloMaker v.1.8.2 
(Fér and Schmickl 2018). The trimming of the adapters and re-
moval of low- quality reads were performed using Trimmomatic 
v.0.33 (Bolger et al. 2014) whereas duplicate reads were elimi-
nated using FastUniq v.1.1 (Xu et al. 2012). Filtered reads were 
mapped using BWA v.0.7.16a (Li and Durbin 2009) with stan-
dard settings. As a reference sequence we used the target loci of 
Helianthus annuus L., which were concatenated and separated 
by batches of 800 Ns. Consensus sequences were produced with 
ConsensusFixer v.0.4 (Töpfer  2018) with “plurality” set to 0.3 
and “mincov” to 5.

The mapped reads were aligned with the target exons using 
BLAT v.35 (Kent  2002) to generate PSLX files. Subsequently, 
locus- wise *fasta files were generated and aligned using 
MAFFT v.7.305b (Katoh and Standley  2013) with default set-
tings. Missing data filtering was conducted first removing se-
quences with more than 40% of missing data (“missingpercent” 
in HybPhyloMaker), then removing alignments including less 
than 75% of samples (“speciespresence” in HybPhyloMaker). 
Finally, 732 regions were retained (Table S1a).

2.5   |   Xanthium strumarium Divergence Time

We used the concatenated dataset with the 732 regions obtained 
in the previous step and 26 samples from all recognised species of 
the genus (Table 1). Input files for Beast2 (Bouckaert et al. 2019) 
were prepared using BEAUti v.2.7.6 (Bouckaert et al. 2019) and 
the “beast” template. We used the GTR + G as sequence substi-
tution model, letting Beast2 optimise model parameters. The 
“Random Local Clock” was selected as clock model. In order 
to obtain absolute divergence times, we followed the approach 
used in Tomasello et  al.  (2020) and gave both an informative 
prior on the clock rate and a calibration point. Accordingly, we 
gave the “clockrates” a uniform distribution (min: 5.0e−5, max: 
5.0e−7) with an initial value of 5.0e−6. Assuming a standard 
substitution rate of 5e−9 in plants (Wolfe et al. 1989), and since 
Xanthium plants are annuals, the clock rate will result in 5e−6 
mutations per site per thousand years (± an order of magnitude). 
As for the calibration point, we based it on the oldest Xanthium 
fossil, consisting of bur fragments found in Indiana (USA) and 
dating back to the Upper Hemphillian/Blancan North American 
stages (Farlow et al. 2001). Therefore, we applied to the root of 
the tree a lognormal prior distribution with mean 3.0 and stan-
dard deviation 2.9 (95% highest prior density ranging between 
3000 and 8910 thousand years ago (ka)).

We ran two analyses for 100,000,000 generations, sampling 
every 10,000 iterations. Convergence between different anal-
yses and effective sample size (ESS) were checked in Tracer 
v.1.7 (Rambaut et al. 2018). The tree files from the two indepen-
dent runs were combined using LogCombiner v.2.7 (Bouckaert 
et al. 2019). Finally, a maximum clade credibility tree was cal-
culated in TreeAnnotator v.2.6 (Bouckaert et  al.  2019), apply-
ing 10% burn- in, a posterior probability limit of 0.5, and “Mean 
Heights” for node heights. Additional sets of analyses were per-
formed using only the clock rates prior or the fossil calibration. 
This was done to assess the effect of using both calibration and 
clock- rate priors in the same analysis.

2.6   |   De- Novo Assembly and Generation of a 
Paralogs- Aware Reference

Some of the 732 loci retained from HybPhyloMaker showed 
signal of paralogy (shared polymorphic sites across all taxa). 
Xanthium, together with members of subtribe Ambrosiinae 
Less. (i.e., Ambrosia L., Iva L., Parhenium L.), has diploid chro-
mosome number equal to 36, which is double the amount pres-
ent in the related subtribes, and may suggest a (paleo- )tetraploid 
origin of the whole subtribe. The (paleo- )tetraploid nature of 
the genus was also corroborated based on isozyme data (Dinelli 
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et al. 2003). Convinced that the presence of paralog signal would 
have more heavily affected paralog filtering in the recently di-
verged X. strumarium, and that not enough loci would have re-
mained if paralogous loci were simply excluded (see e.g., Ufimov 
et al. 2022), we decided to process further the dataset and follow 
another strategy. Rather than excluding paralog loci, an attempt 
was made to separate orthologous sequences and include them 
as separate loci in the analyses.

Therefore, we re- assembled the target regions using 
the software CAPTUS (Ortiz et  al.  2023). In contrast to 
HybPhyloMaker, CAPTUS implements both de- novo and 
reference- based assembly and provide a better paralog detec-
tion strategy. It gives the possibility to retrieve different con-
tigs hits per locus (e.g., different paralogues). The raw reads 
were cleaned from low- quality reads and adapters using the 
“captus_assembly clean” step with standard settings. The re-
sulting quality- trimmed reads were de novo assembled with 
MEGAHIT v.1.2.9 (Li et  al.  2015) using the command “cap-
tus_assembly assemble” with standard settings. Contigs from 
target regions were extracted with “captus_assembly extract” 
and using the H. annuus sequences from the myBaits COS 
Compositae 1Kv1 kit as reference. The “- max_paralogs” flag 
was disabled, to retrieve all secondary hits for each locus. 
Therefore, we selected the sample with the highest number 
of retrieved loci (i.e., X114), and extracted all hits (paralogs) 
for all loci. Those sequences (2150 in total) were used as refer-
ences in the subsequent analyses.

2.7   |   Phylogeny of the Xanthium strumarium 
Species Complex

A total of 48 X. strumarium samples and six outgroups 
(Table 1) were employed. Data processing and assembly was 
done in HybPhyloMaker using the aforementioned 2150 se-
quences as reference. Read mapping was achieved using BWA 
v0.7.16a (Li and Durbin 2009), with the addition of a mismatch 
penalty of 8 to make reads more stringently map to the refer-
ence. Consensus sequences were generated in ConsensusFixer 
as it was done for the dating. BLAT was utilised for the align-
ment of the mapped reads with the targeted exons to gener-
ate PSLX files. The minimum sequence identity between the 
probe and the sample (termed ‘minident’) was set to 99. The 
subsequent steps were carried out as for the age estimation 
analyses. Further putative paralog sequences were excluded 
by employing the “HybPhyloMaker4a2_selectNonHet.sh” 
script and designating a maximum of 5 heterozygous sites per 
locus (“maxhet” in the HybPhyloMaker settings file). Missing 
data filtering was again performed as for the age estimation 
analyses.

A total of 744 loci (Table S1b) were retrieved, concatenated, and 
used to generate an ultrametric Bayesian phylogenetic tree. The 
analyses were conducted using the Beast2 software, employing 
the “Optimized Relaxed Clock”, the GTR + G as substitution 
model, and the “Birth- Death Model” tree model. To obtain ab-
solute divergence times, the crown age of X. strumarium was 
calibrated using the age obtained in the above analysis (i.e., 
it was fixed to the estimate obtained in the age estimation 

analyses). Two independent analyses were run for 100,000,000 
generations, sampling every 10,000 iterations. Convergence and 
effective sample size (ESS) were checked in Tracer v.1.7. The 
tree files from the two independent runs were combined using 
LogCombiner v.2.7 (Bouckaert et  al.  2019), and a maximum 
clade credibility tree was calculated in TreeAnnotator v.2.6 
applying 10% burn- in, a posterior probability limit of 0.5, and 
“Mean Heights” for node heights.

2.8   |   Ancestral Range Reconstruction

The BioGeoBEARS (Matzke  2018) R package was employed 
to infer the biogeographic history of Xanthium strumarium. 
This package is used to reconstruct the ancestral geographic 
distribution on phylogenies using different models and test-
ing the best fitting one in a maximum likelihood framework. 
The three models employed were DEC (Dispersal- Extinction- 
Cladogenesis; Ree and Smith  2008), DIVA (Dispersal- 
Vicariance Analysis; Ronquist  1997) and BayArea (Bayesian 
Inference of Historical Biogeography for Discrete Areas; 
Landis et  al.  2013). These can be combined with a founder- 
event (“jump”) speciation model specified with the parame-
ter “j” (Matzke 2018), or with a distance- dependent dispersal 
probability model specified with the parameter “x” and with a 
distance matrix (van Dam and Matzke 2016). A series of tests 
were conducted to assess the performance of the twelve mod-
els, both with and without the “j” or “x” parameter and the 
combination of both on the ultrametric tree obtained in Beast2. 
The biogeographic areas were set following Groves  (2022). 
Samples were assigned to areas as shown in Figure  2 (see 
also Table 1 and Table S3). The ancestral area of the internal 
nodes above the crown of X. strumarium was fixed, using the 
“fixnodes” setting in the “define_BioGeoBEARS_run” com-
mand, to the Americas only, since (as mentioned above) all 
the close relatives of the species are confined to this continent 
and the oldest fossils of any Xanthium species were also found 
there. A likelihood ratio test (LRT) was employed to compare 
the performance of the different models (e.g., DEC + j against 
DEC) and to select the best- fitting model using the Akaike 
Information Criterion (AIC).

3   |   Results

3.1   |   Sequencing and Data Filtering

A total of circa 110 Gb was the amount of data obtained through 
sequencing. On average, 8,517,649 raw reads per sample (rang-
ing from 639,500 to 23,676,866) were obtained, of which 12.2% 
were excluded on average after quality filtering. An additional 
13.4% was excluded after duplicate removal, ending up with 
a mean of 6,456,042 reads per sample that were submitted to 
subsequent analysis. Further information on the raw data fil-
tering and mapping can be found in Table S1a,b. The 714 loci 
selected for the dating analysis resulted in a total of 228,946 bp 
with 5582 parsimony- informative sites, whereas the 744 single- 
copy loci selected for the in group phylogenetic analyses and the 
ancestral area reconstruction, had a total of 181,154 bp with 591 
parsimony- informative sites.
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3.2   |   Dating

The results from the Beast2 analyses were mostly congruent 
among the three methods (Figures 3 and S1.1–1.2). The crown 
age of X. strumarium is estimated to be ~156.58 ka (95%HPD: 
133.78–187.61 ka). The results from the analyses including 
only the calibration point or the informative prior on the clock 
rates were mostly congruent to those of the main analyses. 
The most different was the one using only clock rates, where 
the crown age of X. strumarium was estimated to be ~135.17 ka 
(95%HPD = 120.31–149.18; Table 2).

3.3   |   Phylogeny of X. strumarium

The Bayesian analysis (Figure 4A), revealed various well sup-
ported clades and showed a clear geographic pattern. The 
earliest diverging clade included samples from India and Sri 
Lanka, followed by a split in which samples from East Asia 
and Mauritius separated from other clades (posterior probabil-
ity of 0.99). In the latter clades, sample X353, from Siberia, is 
found to be sister to the rest of the samples, which are divided 
into three other clades: a first including samples collected in the 
Horn of Africa (posterior probability of 1.0); a second counting 
specimens originated in the Mediterranean (along with the two 
Brazilian samples; posterior probability of 0.99) and a third in-
cluding specimens from the continental Europe, and X355, col-
lected in Ethiopia (posterior probability of 1.00).

3.4   |   Ancestral Range Reconstruction

Results showed that the models including the “j” parameters 
were more likely in most cases. The best- fitting model resulted 
to be the DIVALIKE+j (Table S3; Figure 4). It is noteworthy that 

all the analyses generated with the jump dispersal parameter re-
covered the same ancestral range for X. strumarium, therefore 
converging on the same results.

These support a dispersal scenario. The ancestral area of the 
crown node of the species is reconstructed to be the Indian 
subcontinent. Then a clear dispersal pattern is depicted by the 
analyses, with progressive dispersal of the species to eastern 
Asia (from where it reached the Malay Archipelago, South- 
Eastern Asia, and Mauritius), then westward to Siberia and the 
continental Europe (as defined in Figure 2; but see also uncer-
tainty in the ancestral area estimation for this node, Figure 4B) 
to then arrive to the Horn of Africa and the Mediterranean on 
one side, and to Europe on the other (Figure 4).

4   |   Discussion

With the present contribution, we aimed to reconstruct the bio-
geographic history of Xanthium strumarium and shed light on 
the reasons for its current disjunct distribution range. Xanthium 
strumarium is a recently diverged species distributed throughout 
the entire Eurasian continent, Africa, and nearby islands. In the 
present study, we used herbarium material as old as 240 years 
and target enrichment of nuclear genes, which has proven to be 
extremely useful for degraded DNA and short- length fragments 
(e.g., Hart et al. 2016; Fortes and Paijmans et al. 2015; Brewer 
et  al. 2019; Marinček et  al.  2022; Manzo et  al.  2024). The use 
of herbarium material has been of primary importance, as it 
greatly facilitated sampling throughout the whole distribution 
range of the species. Moreover, as mentioned above in the paper, 
the species has become extremely rare and/or even locally ex-
tinct in various parts of its distribution range (Müller- Kiefer and 
Tomasello 2022), and with field sampling alone would not have 
been possible to get a geographically complete and sufficiently 

FIGURE 2    |    Distribution map of the specimens of X. strumarium analysed (outgroups are excluded). Numbers correspond to the samples IDs, 
coloured ellipses and letters refer to the area defined for the ancestral range reconstruction analysis as in Table 1, Table S3 and Figure 4: American 
(A), Indian (B), Sino- Japanese (C), Malaysian (D), Indochinese (E), Madagascan (F), Siberian (G), African (H), Mediterranean (I) and European (J).
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dense dataset. Our study highlights the importance of herbar-
ium collections for the study of widespread taxa (Hedenäs 2019; 
Muñoz- Rodríguez et al. 2022) and/or extinct (or very rare) enti-
ties (Hardion et al. 2021; Zedane et al. 2016; Manzo et al. 2024).

Upon examination of the nuclear phylogenetic tree, a clear geo-
graphical pattern starting from India, through East Asia and then 
westwards to Europe and Africa is revealed. In particular, the 
Indian specimens form an early diverging clade well separated 
from the other sample. We included two specimens collected in 
Brazil (in the area nearby Rio de Janeiro) in the early 19th cen-
tury (X331, X332). Those Xanthium growing there were already 
known to Vellozo, who described them as a separated species 
(i.e., “Xanthium brasilicum”; Vellozo 1881). Widder (1923) con-
sidered these plants to belong to X. subsect. Orthorrhyncha (i.e., 

coinciding with X. strumarium according to Tomasello (2018)) 
and being similar to the plants of the subsection growing in the 
Mediterranean basin (back then also known as X. antiquorum 
Wallr. X. priscorum Wallr., X. anatolicum Boiss. & Heldr., among 
other names). He hypothesized that those plants were likely orig-
inated from burs brought accidentally by the Portuguese from 
the Mediterranean basin to Southern Brazil. Alternatively, they 
might be related to American representatives of the genus, as for 
example X. chinense Mill., which is found in the Caribbean ar-
chipelago and may resemble in some cases the morphology of X. 
strumarium (e.g., smaller burs, almost glabrous). However, our 
analyses corroborate Widders's hypothesis. The two Brazilian 
samples are found nested in X. strumarium in the phylogenetic 
analysis, within the clade with samples from the Mediterranean 
basin (Figure 4).

FIGURE 3    |    Maximum clade credibility tree estimated in Beast2 based on the nuclear alignment including 26 individuals from the genus 
Xanthium, using both a calibrated root and an informative prior for the clock rate. Blue bars represent 95% highest posterior density (HPD) intervals 
of the estimated age. Only posterior probabilities lower than 1.0 are shown above branches. The focus group is indicated with red branches, and the 
light green region indicates the time frame for the crown age of X. strumarium.
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TABLE 2    |    Results of the Beast2 analyses when using separately calibration point and clock rate, or when using both.

Crown age of X. 
sect. Xanthium

Crown age of X. 
strumarium Root prior

Root age 
estimates

Calibration and clock 
rate

864.07 (794.84–1022.09) 156.58 (133.78–187.61) 3000.00–8190.00 3013.38 
(3000.00–3565.54)

Only calibration 861.37 (654.2–1172.53) 152.03 (107.45–207.43) 3000.00–8190.00 3012.18 
(3000.00–3476.35)

Only clock rate 748.25 (712.45–783.46) 135.17 (120.31–149.18) 2625.89 
(2557.05–2700.99)

Note: In bold are the estimates of the main analyses presented in Figure 3. Estimates are expressed in thousands of years (ka) and number in parentheses refer to 95% 
HPD (high posterior density).
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4.1   |   Time Frame of Dispersal Events 
and the Colonisation of the Old World

The complex is estimated to have initiated its diversification 
recently, between ~135 and ~ 157 ka (Table  2, Figures  3 and 
S1.1–1.2). This places the arrival in the Old World of the ances-
tor of X. strumarium between the end of the Penultimate Glacial 
Period (PGP) and the Eemian (Last Interglacial; Velichko and 
Isavea 1992; Van Andel and Tzedakis 1996), period that prob-
ably provided optimal climatic conditions for a thermophilic 
species.

Following the Eemian period, the Last Glacial Period (LGP) 
commenced and lasted until 11,700 years ago. This period was 
characterised by alternating periods of advance and retreat of 
the ice sheet in the northern part of Eurasia (Adams 1993). The 
Last Glacial Maximum (LGM) is estimated to have occurred be-
tween 26,000 and 20,000 years ago during which temperatures 

were 8°–10° lower than the present in both summer and winter 
(Frenzel, 1992a, 1992b). Based on studies on the changes in 14C 
abundance, fossil and sedimentological information, it was in-
ferred that during this period, ice sheets were present at higher 
latitudes in the Old World, and that at lower latitudes the land-
scape was characterised by steppe- tundra vegetation, while 
southern Europe and China resembled a semi- desert or dry steppe 
region, and south- east Asia by grassland and dry forest (Ray and 
Adams 2001). The conditions in the central and northern part of 
the continent did not align with the known ecological require-
ments of X. strumarium, suggesting that during the LGM the 
species may have survived in refugia southwards in temperate, 
subtropical, and/or tropical habitats. These habitats were likely 
located in India, the Indonesian archipelago, southern East Asia, 
and/or Africa (Ray and Adams 2001). Survival in the Indian sub- 
continent and in Southeastern Asia is also plausible given that the 
oldest fossils of Xanthium in the Old World have been found in 
India, dating back to the Pleistocene (Chauhan 1991).

FIGURE 4    |    (a) Ancestral range reconstruction of the X. strumarium complex as estimated in BioGeoBEARS using the DIVALIKE+j model. For 
visualisation convenience, the most- likely range is shown only when a change in the reconstructed area occurs. Results are shown on the ultrametric 
Bayesian tree estimated in Beast2, based on 744 nuclear loci and including 54 individuals from Xanthium strumarium, along with outgroup sam-
ples. Posterior probability support values above 0.7 are shown under or beside branches. Capital letters and colours indicate the areas defined for the 
analysis as in Table 1, Table S3 and Figure 2. Accordingly, red is for American, orange for Indian, acid- green for Sino- Japanese, green for Malaysian, 
dark green for Indochinese, light blue for Madagascan, ochre for Siberian, blue for African, violet for Mediterranean and pink for European. (b) Plot 
of the most- likely geographical range at each node (just before speciation) and post- split (just after speciation). Pie charts represent the probabilities 
of each possible geographical range for a given node. For representation convenience, only pie at every node where a change in the ancestral area 
occurred are shown.
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The colonisation of the westernmost part of the distribution 
range (Europe and the Mediterranean) most likely occurred 
during the last phases of the LGM and afterwards with the 
retreat of the ice sheet in the European continent (crown age 
of the European samples estimated to be around 60,000–
70,000 years ago; Figure 3). This is in line with the fossil record 
in Europe, with fossils dating back to the LGM and prehistori-
cal times (Járai- Komlodi 1968; Florin 1969; Šoštarić et al. 2009; 
Chichinadze and Kvavadze 2013).

4.2   |   From America Into Southeastern Asia

The phylogenetic tree in Figure  4 shows largely a pectinate 
topology with samples from Southeastern and Eastern Asia 
diverging earlier, and then progressively those from Central 
Asia, East Africa, the Mediterranean basin, and Europe. The 
ancestral area of Xanthium strumarium in the Old World is es-
timated to be the Indian subcontinent (Figure 4). Samples from 
the westernmost part of the distribution range (Europe, the 
Mediterranean basin and the Horn of Africa) are of more recent 
origin. It therefore seems plausible that the genus reached the 
Old World from the east rather than from the west. The very 
recent age of the species would exclude an old vicariance expla-
nation for the disjunct distribution observed in the genus (e.g., 
the West Gondwanan vicariance hypothesis, or the Boreotropic 
hypothesis). A long- distance dispersal from North America to 
Eastern Asia must be invoked for the arrival of the ancestor of X. 
strumarium in the Old World.

The question is still open whether a single trans- Pacific long- 
distance dispersal have managed to bring the ancestor of X. 
strumarium from America to India and South- Eastern Asia, or 
if it was rather a “progressive” migration across the Bering land 
bridge. The fact that India was inferred as the ancestral range of 
the species may support the former hypothesis. The importance 
of transoceanic LDD in explaining the trans- Pacific distribution 
of several subtropical and thermophilic temperate taxa has been 
highlighted in recent studies (De Queiroz 2005; Nathan 2006; 
Michalak et al. 2010; Nie et al. 2013; Wu et al. 2023).

Different vectors could have allowed the transport of Xanthium 
burs across the Pacific Ocean. Xanthium burs can survive float-
ing on saline water for several weeks (Takakura and Fujii 2010). 
Dispersal via oceanic drift is an important mechanism for spe-
cies growing in proximity of seashores or riverbanks, and/or 
with a wide distribution range (Heyligers  2007; Miryeganeh 
et al. 2014; Snak et al. 2016; Liu et al. 2021; Yamazaki et al. 2023). 
Trans- oceanic plant dispersal events have been observed to be 
predominantly east to west rather than vice versa (Parrish 2023). 
An important factor playing a role here may be the North 
Equatorial Current (NEC), which is a westward marine current 
that occurs in the Pacific, Atlantic and Indian Oceans at lati-
tudes between the 5° and 20° north. Water movements driven 
by such currents can be relatively fast (1 m s−1; Renner 2004) and 
can therefore transport plant propagules westwards across the 
oceans in a time span of weeks to few months. Transoceanic 
westward dispersal driven by ocean currents has been demon-
strated in other plant groups (e.g., Canavalia Adans., Snak 
et al. 2016; Cycas L., Liu et al. 2021). The westward transport 
through sea currents of Xanthium burs might be responsible not 

only for the arrival of the ancestor of X. strumarium in the Old 
World (from the Americas to India or Southeastern Asia), but 
also for the further westward spreading of the species. For ex-
ample, a sample collected in Mauritius (X337) is more closely 
related to those from the Malay Archipelago rather than to those 
from the much closer India, or Horn of Africa. Such patterns 
of westward dispersal across the Indian Ocean for plants with 
floating fruits have been corroborated using genomic data and 
ocean drift modelling (Liu et al. 2021).

An alternative mechanism allowing the LDD of Xanthium 
burs across the Pacific Ocean might have been avian migra-
tions. Birds are recognised as important vectors for LDD events 
in plants, especially thanks to ingested seeds that survive gut 
passage and are egested elsewhere (i.e., endozoochory, Yang 
et al. 2018; Zhu et al. 2020; see also van Leeuwen et al. 2023), 
or, to a lesser extent, through externally transported propa-
gules (i.e., epizoochory, Green et al. 2023). Epizoochorous LDD 
of plant seeds by birds has been invoked to explain the disjunct 
distribution range of a number plant groups (e.g., Senecio mo-
havensis A. Gray, Coleman et al. 2003; Plantago ovata Forssk., 
Meyers and Liston  2008; Oligomeris Cambess., Martín- Bravo 
et  al.  2009; tribe Omphalodea Weigend, Otero et  al.  2019). 
However, the burs of Xanthium are larger than the seeds in 
those plant groups, and even if they do adhere effectively to 
mammalian fur, there is little evidence of burs being found at-
tached on bird plumage.

The fact that India was inferred as the ancestral area of X. strumar-
ium does not support the hypothesis of a dispersal from America 
into Asia via the Beringia corridor. The Beringia land bridge has 
played an important role in facilitating floral and faunal exchange 
between Asia and North America during the last glacial periods 
(Waltari et al. 2007). Among plants, some examples of taxa that are 
thought to have crossed the Beringian land bridge are Heracleum 
lanatum W. Bartram (Harris  2007), some species of Saxifraga 
L. (DeChaine et  al.  2013), Juniperus L. (Gutiérrez- Larruscain 
et al. 2024; Mao et al. 2012), Carex L. (Maguilla et al. 2018) and 
AphananthePlanch. (Yang et  al.  2017). To consider the Beringia 
land bridge as a dispersal route for the ancestor of X. strumarium, 
we have to assume the arrival during the penultimate (or even an 
earlier) glacial period, followed by extinction at high latitudes and 
survival in India during glacial periods, and subsequent dispersal 
out of India during the last interglacial. India and Southeastern 
Asia are known to have hosted refugia for thermophilic temperate 
Asian plant species (Ray and Adams 2001). However, most of the 
cases for which a dispersal through the Beringia corridor has been 
proposed are cold- adapted plant groups, and it is difficult to imag-
ine that the climatic conditions in Beringia during glacial periods 
would have been suitable for the growth and fruiting of the ances-
tor of X. stumarium.

4.3   |   Final Remarks

Our study highlights the importance of herbarium collections for 
the study of rare species and/or species with a wide distribution 
range. The utilisation of specimens as old as 240 years, together 
with the new sequencing techniques, has allowed us to better 
understand the phylogenetic relationships, divergence time and 
biogeography of the extremely young species X. strumarium.
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Most probably, between the two last glacial periods an LDD 
event from the Americas to Southeastern Asia led to the arrival 
and spread of the ancestor of X. strumarium in the Old Word. 
Our findings once more corroborate the importance of long- 
distance- dispersal in explaining transoceanic disjunct distribu-
tions in plant groups.
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